top of page

AI Agent Column 3

2025.1.14

AI Agentで何ができるのか?

AiAgent

明けましておめでとうございます。今年も昨年に続いてAI Agentの年になりそうですね!

昨年末のAI Agentコラムの第1回ではAI Agentとは何か、第2回ではなぜいま注目されるのかを紹介しました。そしてこの第3回では、AI Agentに実際に何ができるのか具体的に見ていきたいと思います。

 

――――

 

代表的な用途

 

前回のコラムで触れたように、AI Agentは技術の進化や環境の整備、ビジネスの期待のが高まりなどを背景に、様々な領域で活用が進められています。以下に、代表的な用途をいくつかご紹介します。

 

カスタマーサポート:

AI Agentは、カスタマーサポート業務の自動化で顕著な成果を上げています。具体的には、顧客からの技術的な問題や製品の不具合に関する問い合わせに対し、AI Agentが自律的に対応し、問題の特定、解決策の提示、さらには必要に応じて専門スタッフへの切り分け、引継ぎなども行います。

事務作業:

定型的な事務作業を自動化し、業務効率を高めます。例えば、会議の日程調整や終了後の議事録作成を自動で行います。またメール対応も、これまでのやり取りの経緯や、先方の送付資料を要約し、回答案を生成することができます。日常的なタスクをAI Agentが代行することで、従業員がよりクリエイティブな仕事に集中することができます。

 

データ分析:

AI Agentはデータ分析でも利用されています。例えば、マーケティング担当者が『今期売上が最も伸びた商品は何か?』と尋ねると、売上データを解析し商品別成長率を示します。続けて『その商品の売上が伸びた地域は?』と尋ねると、その商品の地域別成長率を示します。こうした対話的なプロセスで、ユーザーの意思決定を支援します。

 

ソフトウェア開発:

AI Agentは、ソフトウェア開発においてコード生成やデバッグ支援、タスクの自動化などに利用されています。例えば、開発者が必要な機能を説明すると、それを基にサンプルコードを生成し、エラーが発生した場合にはエラーメッセージから修正案を提示することができます。また、テストケースの生成や実行の自動化を通じて、品質向上にも貢献しています。

 

マーケティングコンテンツ作成:

SNS投稿やキャンペーン資料の作成を支援します。例えば、新商品の特長を入力すると、それを基にキャッチコピーや投稿文を生成します。また、ターゲット層の説明をもとにその層に訴求するデザイン案や画像の生成も可能です。これにより、マーケティング業務の負担を軽減し、かつ、迅速かつ効果的な施策を実行することができます。

 

教育:

AI Agentはまた、教育分野における個別最適化学習にも使われています。例えば、学習者の進捗を分析し、苦手分野を特定して適切な練習問題を提案します。また、教員向けにはテスト採点や出席管理といった事務作業を自動化し、教育活動に集中できる環境を提供します。

バリエーション豊かなAI Agent

 

このように、AI Agentとひとことで言っても、その役割や適用範囲は非常に幅広いものです。人間の意思決定や創造性を支援することに重きを置くものもあれば、人間の負担を減らすために自動実行に重きを置くものもあります。また、特定の業務に特化したAgentもあれば、幅広い分野で活用できる汎用型のAgentも存在します。

先に挙げた用途の例は、以下のように整理するとわかりやすいでしょう。

AI_Agent_chart

このように、AI Agentはさまざまな用途で活用が進んでいます。さらに、AI Agent自身の柔軟性の高さや、多様な試みが世界中で行われていることから、今後ますます広い領域に適用されていくことでしょう。

 

――――

 

今回はAI Agentの代表的な用途と、その幅広さについてご紹介しました。一方で、AI Agentはまだ万能ではありません。次回の第4回では、AI Agentを実際の業務に適用する際の難しさについてお話ししたいと思います。

ぜひご期待ください。

bottom of page